Feature selection algorithms using Chilean wine chromatograms as examples
نویسندگان
چکیده
This work presents the results of applying genetic algorithms, in selecting the more relevant features present in chromatograms of polyphenolic compounds, obtained from a high performance liquid chromatograph with aligned photodiodes detector (HPLCDAD), of samples of Chilean red wines Cabernet Sauvignon, Carmenere and Merlot. From the 6376 points of the original chromatogram, the genetic algorithm is able to select 37 of them, providing better results, from classification point of view, than the case where the complete information is used. The percent of correct classification reached with these 37 features turned out to be 94.19%.
منابع مشابه
Probabilistic Adaptive Crossover Applied to Chilean Wine Classification
Recently, a new crossover technique for genetic algorithms has been proposed.The technique, called probabilistic adaptive crossover (PAX), includes the estimation of the probability distribution of the population, storing the information regarding the best and the worst solutions of the problem being solved in a probability vector. The use of the proposed technique to face Chilean wine classifi...
متن کاملFeature extraction and classification of Chilean wines
In this work, results of Chilean wine classification by means of feature extraction and Bayesian and neural network classification are presented. The classification is made based on the information contained in phenolic compound chromatograms obtained from an HPLC-DAD. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère samples from different years, val...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملFeature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm
This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the measure...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کامل